In this session , the problems consists the uses of symmectries of the polygon . Here , we illustrate this with the following fasciating facts of the construction of the regular petagons .Of cource there exists a classical ruler and compass construction , but there is an easierway to do it . At first , make the simplest knot, the trefoil knot, on a ribbon of paper , then flattern it as the following knot .After cutting of the two ends of the ribbon , one obtains a regular pentagons .

Problems :

1.Let be a regular polygons inscribed in the circle of the centre and the radius . On the half line cnoose such that is between and .Prove that

= .

2.Let be a regular heptagon .Prove that

If the above relation holds then prove that the polygon is a heptagon , that is ( ).

Problems :

1.Let be a regular polygons inscribed in the circle of the centre and the radius . On the half line cnoose such that is between and .Prove that

= .

2.Let be a regular heptagon .Prove that

If the above relation holds then prove that the polygon is a heptagon , that is ( ).

Advertisements
(function(){var c=function(){var a=document.getElementById("crt-2031419883");window.Criteo?(a.parentNode.style.setProperty("display","inline-block","important"),a.style.setProperty("display","block","important"),window.Criteo.DisplayAcceptableAdIfAdblocked({zoneid:388248,containerid:"crt-2031419883",collapseContainerIfNotAdblocked:!0,callifnotadblocked:function(){a.style.setProperty("display","none","important");a.style.setProperty("visbility","hidden","important")}})):(a.style.setProperty("display","none","important"),a.style.setProperty("visibility","hidden","important"))};if(window.Criteo)c();else{if(!__ATA.criteo.script){var b=document.createElement("script");b.src="//static.criteo.net/js/ld/publishertag.js";b.onload=function(){for(var a=0;a<__ATA.criteo.cmd.length;a++){var b=__ATA.criteo.cmd[a];"function"===typeof b&&b()}};(document.head||document.getElementsByTagName("head")[0]).appendChild(b);__ATA.criteo.script=b}__ATA.criteo.cmd.push(c)}})();
(function(){var c=function(){var a=document.getElementById("crt-756542237");window.Criteo?(a.parentNode.style.setProperty("display","inline-block","important"),a.style.setProperty("display","block","important"),window.Criteo.DisplayAcceptableAdIfAdblocked({zoneid:837497,containerid:"crt-756542237",collapseContainerIfNotAdblocked:!0,callifnotadblocked:function(){a.style.setProperty("display","none","important");a.style.setProperty("visbility","hidden","important")}})):(a.style.setProperty("display","none","important"),a.style.setProperty("visibility","hidden","important"))};if(window.Criteo)c();else{if(!__ATA.criteo.script){var b=document.createElement("script");b.src="//static.criteo.net/js/ld/publishertag.js";b.onload=function(){for(var a=0;a<__ATA.criteo.cmd.length;a++){var b=__ATA.criteo.cmd[a];"function"===typeof b&&b()}};(document.head||document.getElementsByTagName("head")[0]).appendChild(b);__ATA.criteo.script=b}__ATA.criteo.cmd.push(c)}})();